Block Complexes and Cell List

Copyright © by V. Kovalevsky, last update: 2010-10-21

\downarrow Block Complexes
\downarrow Geometric 2D Cell List
\downarrow Example of a 3D Cell List
\downarrow References

Block Complexes

Partitions of complexes satisfying certain conditions are known as block complexes.
Consider the following example:
Consider a partition R of an n-dimensional complex A into k-dimensional subcomplexes $S_{i}^{k}(k=0,1, \ldots$, $n, i=0,1, \ldots, m)$. Subsets with $k=0$ are some 0 -cells of A; each of the subsets with $k>0$ is combinatorially homeomorphic to an open k-dimensional ball. We define an AC complex B whose cells correspond to the subcomplexes S_{i}^{k}. This is the block complex. The cells of B are called block cells, while the subcomplexes S_{i}^{k} are the blocks.

Geometric 2D Cell List

The underlying data structure is called a two-dimensional cell list

The sub-list of points (0 -blocks)

Index	X	Y	$N_{\text {lin }}$	Lines
P_{1}	4	9	3,	$+L_{1},-L_{3},+L_{4}$
P_{2}	0	2	3	$-L_{1},+L_{2},-L_{5}$
P_{3}	9	4	3	$-L_{2},+L_{3},+L_{6}$
P_{4}	4	6	3	$-L_{4},+L_{5},-L_{6}$

The sub-list of the 0 -block cells contains the coordinates X and Y of each branch point in the original image. This data belong to the "geometric information" enabling the reconstruction of the original image from the cell list. If only topological information is wanted, then the columns with the coordinates can be omitted. The list also indicates for each 0-block cell P_{i} the number $N_{\text {lin }}$ of all 1-blocks cells incident to P_{i} and their signed indices. The negative sign of an index L_{k} in the row of P_{i} indicates that P_{i} is the end point of L_{k}.

The sub-list of lines (1-block cells)

Index	Starting point	End point	Right region	Left region	Metric	
	L_{1}	P_{1}	P_{2}	R_{0}	R_{1}	M_{1}
	M_{1}					
L_{2}	P_{2}	P_{3}	R_{0}	R_{3}	M_{2}	M_{3}
L_{3}	P_{3}	P_{1}	R_{0}	R_{2}	M_{4}	M_{4}
L_{4}	P_{1}	P_{4}	R_{1}	R_{2}	-	-
L_{5}	P_{4}	P_{2}	R_{1}	R_{3}	M_{5}	M_{5}
L_{6}	P_{3}	P_{4}	R_{2}	R_{3}	-	-

The sub-list of regions (2-block cells)

Index	N_{Cl}	Pointer	Chained list
R_{0}	6	$Z_{1} \rightarrow$	$P_{1} \rightarrow+L_{1} \rightarrow P_{2} \rightarrow+L_{2} \rightarrow P_{3} \rightarrow+L_{3} \rightarrow$
R_{1}	6	$Z_{2} \rightarrow$	$P_{1} \rightarrow+L_{4} \rightarrow P_{4} \rightarrow+L_{5} \rightarrow P_{2} \rightarrow-L_{1} \rightarrow$
R_{2}	6	$Z_{3} \rightarrow$	$P_{1} \rightarrow-L_{3} \rightarrow P_{3} \rightarrow+L_{6} \rightarrow P_{4} \rightarrow-L_{4} \rightarrow$
R_{3}	6	$Z_{4} \rightarrow$	$P_{2} \rightarrow-L_{5} \rightarrow P_{4} \rightarrow-L_{6} \rightarrow P_{3} \rightarrow-L_{2} \rightarrow$

The sub-list of the 1-block cells contains the indices of its startng and end points. It also contains the indices of the right and left regions. The last two columns contain indices of the so-called metric points which are no branch points. Their coordinates are saved in the sub-list of metric data (see below). They are vertices of a polygonal line approximating the corresponding segment of the boundary of a region. The metric points are lying between the end points of a line. They are necessary to describe (together with the coordinates of the branch points) geometric features of the image represented by the block complex and serve for the reconstruction of the image. The coordinates can be omitted in a purely topological version of a cell list.

The metrical sub-list

Index	X	Y
M_{1}	0	9
M_{2}	0	0
M_{3}	9	0
M_{4}	9	9
M_{5}	1	2

It is also possible to make a cell list for a 3D image containing many bodies. If you are interested in details see the references [1] and [2]. A simple example follows.

An Example of a 3D Cell List

Small sample with 12 points, 20 lines, 10 faces and 1 body.

Cell List of the small sample with 12 points, 20 lines, 10 faces and 1 body: ----------------- Sub-list of points------------------
Point 1 (2; 2; 2) is incident with 3 lines: -1; - 3; - 2;
Point 2 (16; 2; 2) is incident with 3 lines: 1; - 7; - 5;
Point 3 (2;16; 2) is incident with 3 lines: 2; - 8; - 4;
Point 4 (2; 2; 4) is incident with 4 lines: 3; -13; - 9; -6;
Point 5 (16;16; 2) is incident with 3 lines: 4; -10; 5; Point 6 (16; 2; 4) is incident with 4 lines: 6; -14; -12; 7; etc. Points 7 to 12
---------------- Sub-list of lines (Left, Right from outside)

Line	1	StartP= 1	EndP= 1	Left= 2	Right=
Line	2	StartP= 1	EndP= 1	Left= 1	Right= 3
Line	3	StartP= 1	EndP= 1	Left= 3	Right= 2
Line	4	StartP=1	EndP= 3	Left $=1$	Right $=5$
Line	5	StartP=1	EndP= 2	Left $=4$	Right= 1
Line	6	Start $\mathrm{P}=1$	EndP $=4$	Left $=6$	Right= 2
Line	7	StartP=	EndP= 2	Left= 2	Right= 4
Line	8	StartP= 1	EndP= 3	Left= 5	Right= 3
Line	9	StartP=	EndP= 4	Left=3	Right= 7
Line	10	StartP= 1	EndP= 5	Left= 4	Right= 5
Line	11	StartP=1	EndP= 7	Left $=5$	Right= 9
Line	12	StartP= 1	EndP $=6$	Left= 8	Right= 4
Line	13	Start $\mathrm{P}=1$	EndP $=4$	Left= 7	Right $=6$
Line	14	StartP= 1	EndP $=6$	Left $=6$	Right= 8
Line	15	StartP=1	EndP= 9	Left=10	Right $=6$
Line	16	StartP= 1	EndP= 7	Left= 9	Right= 7
Line	17	StartP= 1	EndP= 9	Left=7	Right=10
Line	18	StartP=1	EndP= 8	Left= 8	Right= 9
Line	19	Start $\mathrm{P}=1$	EndP=11	Left= 9	Right=10
Line	20	StartP= 1	EndP=10	Left=10	Right=

----------------- Sub-list of 1 body -------------------
Faces 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

References

[1] V. Kovalevsky, Finite Topology as Applied to Image Analysis, Computer Vision, Graphics and Image Processing, v. 46, pp. 141-161, 1989..
[2] V. Kovalevsky: Geometry of Locally Finite Spaces, Monography, Berlin 2008.

