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Introduction 

As explained in the lecture "Introduction", topological notions of connectedness and of the 

boundary of a subset are important for image analysis. The widely used concept of m, n-

adjacencies defines these notions not satisfactorily: different adjacencies for the foreground 

and background are only applicable for binary images. A subset has two boundaries: the inner 

and the outer ones. They do not satisfy the Jordan Curve Theorem.  

A digital topological space must be locally finite which means that each space element must 

have a finite neighborhood, while in the classical Hausdorff-topology each neighborhood 

must be infinite. A space with infinite neighborhoods cannot be explicitly represented in a 

computer. 

 

It is possible to define consistent digital topology while starting from classical topology. 

However, we have chosen another way, more comprehensible for practically oriented 

researchers. We have suggested a new set of axioms based on the notions of connectedness 

and boundary. We call a locally finite topological space satisfying our axioms an ALF space.  

We have demonstrated that the neighborhood relation in an ALF space must be antisymmetric 

and transitive. Otherwise boundaries would be thick, i.e. consisting of two parallel running 

sequences of space elements. They would also contain gaps as explained below. 

 

http://www.kovalevsky.de/AxiomaticPaper.pdf
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L09_AxiomaticTopology/AxiomaticTopology.htm%23a1
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L09_AxiomaticTopology/AxiomaticTopology.htm%23a2
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L09_AxiomaticTopology/AxiomaticTopology.htm%23a7
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L09_AxiomaticTopology/AxiomaticTopology.htm%23a8
file:///C:/Users/Kovalevski/Documents/Miszalok/Web20/Kovalevsky/Topology/L09_AxiomaticTopology/AxiomaticTopology.htm%23a9
mailto:prof@miszalok.de?subject=Kovalevsky%20Lectures


         
         
         

    

 

 

      
         

Smallest 

neighborhood

: 

 

Examples of boundaries: a thick boundary (a); a thin boundary (b) 

The smallest neighborhoods of different space element are shown in the above figure below 

the grid. They are different in a and b. In Fig. a the space S consists of squares only. The 

subset T is the set of gray squares. The symmetric relation N is the well-known 4-adjacency. 

Elements of the boundary Fr(T, S) are labeled by black or white disks. Squares with black disks 

belong to T, while those with white disks belong to ST. In Fig. a each element of the boundary 

has at least one opponent. Pairs of opponents are shown by connecting lines. The boundary is 

thick. 

In Fig. b the space consists of points (represented by disks), lines and squares. The boundary 

Fr(T, S) is represented by bold lines and big disks. The gray squares, solid lines and black 

disks belong to T; the white squares, dotted lines and white disks belong to ST. The short 

solid line KT and the white point QST belong to different subsets. Nevertheless, they are 

no opponents since Q does not belong to the smallest neighborhood SN(K). The same is true 

for the pair (L, P). Thus the boundary is thin. The boundary of T is the same as the boundary 

of its complement ST. 

Another important property of the boundary is, non-rigorously speaking, that it must have no 

gaps, which is not the same, as to say, that it must be connected. More precisely, this means, 

that the boundary of a boundary F is the same as F. For example, the boundary in the figure 

below has gaps represented by white disks. Let us explain this.  



          

 

The figure shows a space S consisting of points, lines and squares. The relation N is now non-

transitive: the SN(P) of a point P contains some lines incident to P but no squares. The SN of 

a line contains one or two incident squares, while the SN of a square is the square itself. The 

subset T is represented by gray elements. Its boundary Fr(T, S) consists of black lines and 

black points since these elements do not belong to T, while their SNs intersect T. The white 

points do not belong to F=Fr(T, S) because their SNs do not intersect T. These are the gaps. 

However, Fr(F, S) contains the white points because their SNs intersect both F and its 

complement (at the points itself). Thus in this case the boundary Fr(F, S) is different from F= 

Fr(T, S). 

We have proved [1, 2] that the boundary Fr(F, S) is different from F= Fr(T, S) only if the 

neighborhood relation is non-transitive, which fact is important to demonstrate that the 

smallest neighborhoods satisfying our axioms are open subsets of the space. 

There is a possibility to achieve that the boundary be thin for any subset of a space with a 

symmetric neighborhood relation: it is necessary to change the Definition FR of the boundary 

so that only elements of T may belong to the boundary of T [18]. However, this possibility 

leads to different boundaries of T and of its complement ST, which may be considered as a 

topological paradox and contradicts the classical definition of the boundary. Thus, the 

neighborhood relation in a space satisfying our axioms must be antisymmetric. 

Completely Connected Spaces 

An n-dimensional LF space, in which the principal cells are isomorphic to translates of a 

single polytope and any two principal cells, which have a common incident cell of any 

dimension also have a common incident (n−1)-cell, is called a homogeneous completely 

connected space or an HCC space. If two principal cells have a common (n−1)-cell, then no 

topological contradiction as those explained at the beginning of this lecture can occur. In a 

HCC space each pair of adjacent principal cells has a common (n−1)-cell. Therefore in an 

HCC space the adjacency pair (m, m), where m is the number of the principal cells adjacent to 

each principal cell, is consistent. The reader can easily see that the hexagonal grid is the only 

two-dimensional HCC space. It is known that the truncated octahedron (figure below) is the 

only "primitive" parallelohedron, i. e., at each of its vertices exactly 4 (generally: n+1) tiles of 

a suitable face-to-face-tiling come together. It has 14 faces. Parallelohedrons of this tiling are 

isomorphic to the principal cells of a 3D HCC space.  



  

The truncated octahedron 

Since the truncated octahedron is the only primitive parallelohedron, other tesselations of the 

3D space by translation do not compose HCC spaces. Therefore, in the tesselation by rhombic 

dodecahedrons, which corresponds to the above mentioned (12, 12) adjacency, two principal 

cells may have a 0-cell c0 as the single common face. Thus a topological contradiction takes 

place when the first adjacency demands that c0 belongs to the foreground while the second 

adjacency demands that it belongs to the background.  

 

 

Applications 

We have demonstrated [1] that the majority of the adjacency pairs are topologically 

contradictory. Even the few consistent pairs, (4, 8) and (8, 4) in 2D and (6, 26) and (26, 6) in 

3D, have important drawbacks: 

a)      They are only applicable in cases when there is only one subset of the space under 

consideration (and its complement). Thus they are not applicable, e.g., for colored images. 

b)      Even in the case of a black-and-white image the structure created by an adjacency pair is 

topologically imperfect: thus, e.g. a 4-connected subset is full of holes due to the missing 

0-cells. Consider e.g. an image with the (4, 8)-adjacency and the 4-connected dark subset 

of the figure below. It is topologically correct that the 0-cell between the pixels d and f 

belongs to the white subset making the pixels d and f disconnected and the pixels c and g 

connected.  

 

Holes in a 4-connected subset 

However, it is not necessary, that the 0-cell between the pixels d and b belongs to the white 

subset. This makes the greater component of the dark subset not simply connected. The 0-

cells incident to 4 pixels of T belong to the boundary of the dark subset and the boundary is 

disconnected, which is never the case for a simply connected subset of a topological space 



of dimension greater than 1. This drawback does not affect the desired connectedness; it 

can, however, lead to topological contradictions when solving more complicated 

topological problems. For example, a 6-connected "surface" in 3D has a lot of tunnels due 

to missing 1-cells. 

c) The boundaries of subsets under an adjacency relation are either not thin (see above) or the 

boundary of a subset is different from the boundary of its complement, which is nonsense 

both from the point of view of topology and of the common sense. 

d) The connectedness structure produced by an adjacency pair is no topological space at all 

since this structure is a property of a concrete subset of the space rather than that of the 

space. The connectedness changes when the subset changes. 

What are the conclusions and the recommendations for algorithm design? We recommend not 

to use adjacency relations and to consider all topological and geometrical problems from the 

point of view of locally finite topological spaces (ALF spaces) or, even better, of complexes. 

The latter special case of an ALF space has some advantages due to the presence of the 

dimensions of cells. The dimensions of cells make the work with the topological space easier 

and more illustrative. 

The usual objections against the use of complexes are the following: 

a) Why should we use cells of lower dimension, which we don’t see on a display? 

b) When using complexes, one needs much more memory space: 4 times or 8 times more in 

the 2D or in the 3D case correspondingly. 

The objection because of visibility is not pertinent since the visibility has nothing to do with 

topology. For example, we all use in our work with 3D images the voxels. However, the 

voxels are not visible on the displays: what we see are the faces of voxels, i.e. the 2-cells, 

while voxels are 3-cells. Thus, e.g. the software "OpenGL", which is widely spread for 

representing 3D scenes, works only with faces of polyhedrons like triangles, squares, 

polygons and does not use three-dimensional bodies at all. 

The second objection is pertinent only if one would try to allocate memory space for cells of 

all dimensions, which is almost never necessary. Cell complexes are a means for thinking 

about geometrical and topological problems rather than for data saving. It is possible to work 

with complexes, while saving in the memory only certain values assigned to the principal 

cells, like colors for the pixels, or densities for the voxels. Cells of lower dimensions are 

present as some kind of virtual objects only. Algorithms of this kind are described in [2]. 

In cases when the membership of cells of lower dimensions is important it can be defined by a 

"flat rate" face membership, i.e., a rule specifying the set membership of each cell as a 

function of the membership of the incident principal cells.  

Consider the example of the figure below. Suppose, it is necessary to define the 

connectedness in such a way that both the white and the black "V" are connected. This is 

obviously impossible under any adjacency relation. The aim can be achieved by means of the 

following rule [2, page 190] for assigning membership labels to 1- and 0-cells. 



 

A white and a black V-shaped regions in one image, both connected 

due to applying the EquNaLi rule 

EquNaLi Rule: 

A 1-cell gets the greatest label of the two incident pixels. 

The label of a 0-cell c0 is defined as follows: 

If SN(c0) contains exactly one diagonal pair of pixels with equivalent ("Equ") labels, then 

c0 gets this label. If there are two such pairs but only one of them belongs to a narrow 

("Na") stripe, then c0 gets the label of the narrow stripe. Otherwise c0 gets the maximum, 

i.e. the lighter ("Li") label of the pixels of SN(c0). 

The latter case corresponds to the cases when SN(c0) contains no diagonal pair with 

equivalent labels or it contains two such pairs and both of them belong to a narrow stripe. 

To decide, whether a diagonal pair in SN(c0) belongs to a narrow stripe it is necessary to scan 

an array of 4x4 pixels with c0 in the middle and to count the labels corresponding to both 

diagonals. The smaller count indicates the narrow stripe.  

Another important problem is that of using completely connected spaces. It is not correct to 

think that we need some special scanners or other special hardware to work with a hexagonal 

2D space or with a 3D space tessellated by truncated octahedrons. It is possible to use as ever 

the standard orthogonal grids. The only thing, which must be changed is the definition of the 

incidence and hence that of the connectedness.  

Consider the example of the hexagonal 2D space. 
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A hexagonal grid, a transformed rectangular grid, a rectangular grid with 6-adjacency 

and the "virtual" cells, transforming each pixel to a hexagon 



Figure a shows a hexagonal grid. In the figure b we see the transformed rectangular grid, in 

which the upper left corner of each rectangular pixel is replaced by a slanted edge. The 

original rectangular grid is shown figure c. The arrows show the only six pixels, which should 

be considered as adjacent to the shaded pixel. If it is necessary to take cells of lower 

dimensions in consideration, then two 0-cells and three 1-cells must be assigned to each pixel, 

as shown in figure d. Thus two virtual 0-cells and one virtual 1-cell correspond to each vertex 

of the grid. The remaining two 1-cells correspond to the edges of the grid. All five faces 

assigned to a pixel have the same coordinates as the pixel. They can be distinguished by their 

types only. If it is necessary to assign a label to each 0-cell and to each 1-cell then 5 bits of the 

memory word assigned to the pixel can be used for these cells. The rest of the memory word 

can be used for the label or for the color of the pixel. It should be stressed once more, that the 

6-adjacency realized by this data structure may be used for multicolored images and causes no 

topological paradoxes. 

A similar data structure can be easily developed for the 3D standard grid to realize the 14-

adjacency corresponding to the only 3D HCC space (see above). 

Conclusion 
We have suggested a new set of natural axioms of digital topology and have demonstrated, 

that they define a space, which is a particular case of a classical topological space. This fact 

serves as an explanation, why the key object of the classical topology, the system of open 

subsets, must have the properties formulated as the classical axioms: these properties are 

necessary (but not sufficient) to define the connectedness through neighborhoods and the 

boundary of a subset T as a thin subset, which is the same for a subset T and for its 

complement.  

The paper [1] demonstrates how the (a, b)-adjacency relations commonly used in computer 

imagery can be brought into accordance with the connectedness of a topological space. It was 

demonstrated that in spaces of any dimension n only those pairs (a, b) of adjacencies are 

consistent, in which exactly one of the adjacencies is the "maximal" one corresponding to 

3
n
1 neighbors. Even the consistent pairs have important limitations: they are not applicable 

for multicolored images and they cannot correctly represent topological properties of subsets. 

We suggest to use instead the concept of ALF spaces, while considering space elements of 

lower dimensions as "virtual" objects, which need not be saved in the memory. This attitude 

makes it possible to apply consistent topological definitions and algorithms to images 

represented in standard grids. The notion of homogeneous completely connected spaces is 

introduced, and it has been demonstrated, that there is only one such space of dimension 3; it 

is isomorphic to the tessellation by truncated octahedrons, each of which has 14 adjacent 

octahedrons. 

We have shown how locally finite spaces, especially cell complexes and completely 

connected spaces, can be applied to computer imagery, while using standard orthogonal grids. 
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