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Abstract. The paper presents a new set of axioms of digital topology, which are easily understandable for
application developers. They define a class of locally finite (LF) topological spaces. An important property of
LF spaces satisfying the axioms is that the neighborhood relation is antisymmetric and transitive. Therefore any
connected and non-trivial LF space is isomorphic to an abstract cell complex. The paper demonstrates that in an
n-dimensional digital space only those of the (a, b)-adjacencies commonly used in computer imagery have analogs
among the LF spaces, in which a and b are different and one of the adjacencies is the “maximal” one, corresponding
to 3"—1 neighbors. Even these (a, b)-adjacencies have important limitations and drawbacks. The most important
one is that they are applicable only to binary images. The way of easily using LF spaces in computer imagery on

standard orthogonal grids containing only pixels or voxels and no cells of lower dimensions is suggested.
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1. Introduction

In 2001 Yung Kong [9] issued the challenge to “con-
struct a simplest possible theory that gives an axiomatic
definition of well-behaved 3-d digital spaces”. In many
publications on digital topology [4, 7] including those
by Kong and Rosenfeld [11], A. Rosenfeld being the
author of the graph-based approach to digital topology,
the authors interpret “well-behaved” as being in accor-
dance with classical topology with regard to connect-
edness and validity of the Jordan theorem. One possible
way to check the accordance is to adapt the classical
axioms of the topology to digital spaces and to compare
the connectedness relation in a digital image and in a
corresponding topological space. We shall discuss the
most important and recent publications concerned with
this comparison in Section 5 after we have introduced
all necessary definitions.

We prefer to demonstrate here another way since for
many practically oriented researchers it is not clear,
why the notion of an open subset, that is the key notion
of the classical topology, should be applied to digital

spaces. Practically oriented researchers may put the fol-
lowing questions: Is it absolutely necessary to use the
notion of open subsets satisfying the classical axioms
to achieve the purposes of applications? Is it perhaps
possible to find quite different axioms and to construct
a theory based on these new axioms, which would sat-
isfy all practical demands?

We formulate in Section 2 a new set of axioms, which
are “natural” from the point of view of our intuition
and of practical demands. Then we prove some theo-
rems and demonstrate the consequences for the theory
and for applications of digital spaces, especially for the
(a, b)-adjacency relations commonly used in computer
imagery.

We demonstrate in Section 3 that a topological space
satisfying our Axioms is a particular case of the clas-
sical topological space. In Section 4 we deduce from
our Axioms the most important properties of the lo-
cally finite spaces satisfying Axioms (ALF spaces) and
demonstrate that the neighborhood relation must be an-
tisymmetric and transitive. In Section 5 we discuss the
previous work (it is impossible to discuss the previous
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work before all the necessary notions are defined and
explained). In Section 6 we investigate, following the
above mentioned challenge by Yung Kong, the pairs of
adjacency relations commonly used in computer im-
agery and demonstrate that in spaces of any dimension
n only those pairs (a, b) of adjacencies are consistent, in
which exactly one of the adjacencies is the “maximal”
one, corresponding to 3" —1 neighbors. We also intro-
duce the notion of homogeneous completely connected
spaces and demonstrate that the only such space of di-
mension 3 is the complex whose principal cells are iso-
morphic to truncated octahedrons, i.e. to polyhedrons
with 14 faces. Section 7 is devoted to recommendations
for applications. We suggest there techniques which
allow one to easily apply the concept of ALF spaces
to standard orthogonal grids containing only pixels or
voxels and no cells of lower dimensions. The list of
abbreviations is to be found in Appendix 2.

2. Axioms of Digital Topology

Let us start with an attempt to suggest certain axioms
and definitions of topological notions, which are dif-
ferent from those usually to be found in text books of
topology, while being comprehensible for practically
oriented researchers.

A digital space must obviously be a so called locally
finite space to be explicitly representable in the com-
puter. In such a space each element has a neighborhood
consisting of finitely many elements. We don’t call the
elements “points” since, as we will see, a locally finite
space must possess elements with different topological
properties, which must have different notations.

We suggest the following set of axioms concerned
with the notions of connectedness and boundary, which
are the topological features most important for appli-
cations in computer imagery.

Definition LFS (locally finite space). A nonempty
set S is called a locally finite (LF) space if to each
element e of § certain subsets of S are assigned as
neighborhoods of e and some of them are finite.

We shall consider in what follows a particular case
of an LF space satisfying the following Axioms 1 to 4
and we shall denote it an ALF space.

Axiom 1. For each space element e of the space S there
are certain subsets containing e, which are neighbor-
hoods of e. The intersection of two neighborhoods of
e is again a neighborhood of e.

Since the space is locally finite, there exists the
smallest neighborhood of e that is the intersection of
all neighborhoods of e. Thus each neighborhood of e
contains its smallest neighborhood. We shall denote
the smallest neighborhood of e by SN(e).

Axiom 2. There are space elements, which have in their
SN more than one element.

Definition IN (incidence). If b € SN(a) or a € SN(b),
then the elements a and b are called incident to each
other.

According to the above definition, the incidence re-
lation is symmetric. Itis reflexive sincea € SN (a). The
notion of incident elements seems perhaps to be similar
to the adjacency introduced in [20]. There is, however,
an important difference between them because we do
not suppose that all elements have the same number of
incident elements.

Definition IP (incidence path). Let T be a subset of
the space S. A sequence (ay,as,...,ar),a;,€T,i =1,
2, ..., k; in which each two subsequent elements are
incident to each other, is called an incidence path in T
from a; to ay.

Definition CN (connected). Incident elements are
directly connected. A subset T of the space § is
connected iff for any two elements of T there exists an
incidence path containing these two elements, which
completely lies in T'.

Let us now formulate axioms related to the notion
of a boundary. The classical definition of a boundary
(exactly speaking, of the topological boundary or of
the frontier) is as follows:

Definition FR (frontier). The topological boundary,
also called the frontier, of a non-empty subset T of the
space S is the set of all elements e of S, such that each
neighborhood of e contains elements of both 7" and its
complement S—T7'.

We shall denote the frontier of 7CS by Fr(7, S).

In the case of a locally finite space it is obviously
possible to replace “each neighborhood” by “smallest
neighborhood” since according to Axiom 1 each neigh-
borhood of a contains the smallest neighborhood of a.
Now let us introduce the notions of a thick and a thin
frontier.
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Figure 1. Examples of frontiers: a thick frontier (a); a thin frontier (b); a frontier with gaps (c).

Definition NR (neighborhood relation). The neigh-
borhood relation N is a binary relation in the set of the
elements of the space S. The ordered pair (a, b) is in
N iff a € SN(b).

We also write aNb for (a, b) in N.

Definition OT (opponents). A pair (a, b) of elements
of the frontier Fr(T, S) of a subset T C S are oppo-
nents of each other, if a belongs to SN(b), b belongs to
SN(a), one of them belongs to T and the other one to
its complement S — 7.

Definition TF (thick frontier). The frontier Fr(T, S)
of a subset T of a space S is called thick if it contains
at least one pair of opponents. Otherwise the frontier
is called thin.

To justify of the notation “thick” let us remark, that
at locations where there are opponent pairs in the fron-
tier, the frontier is doubled: there are two subsets of
the frontier, which run “parallel” to each other. These
subsets are called border and coborder in [7]. Figure 1
shows some examples.

The smallest neighborhoods of different space ele-
ment are shown below the grid. They are different in a,
bandc. InFig. 1(a) the space S consists of squares only.
The subset T is the set of gray squares. The symmetric
relation N is the well-known 4-adjacency. Elements of
Fr(T, S) are labeled by black or white disks. Squares
with black disks belong to 7', while those with white
disks belong to S — T'. In Fig. 1(a) each element of the
frontier has at least one opponent. Pairs of opponents
are shown by connecting lines. The frontier is thick.

In Fig. 1(b) the space consists of points (represented
by disks), lines and squares. The frontier Fr(T', S)
is represented by bold lines and big disks. The gray

squares, solid lines and black disks belong to T'; the
white squares, dotted lines and white disks belong

to § — 7. The solid line K € T and the white point
Q € S — T belong to different subsets. Nevertheless,
they are no opponents since Q ¢ SN(K). The same
is true for the pair (L, P). Thus the frontier is
thin.

Axiom 3. The frontier Fr(T', S) of any subset T C S is
thin.

According to Definition Fr the frontier of T is the
same as the frontier of its complement S — 7.

Another important property of the frontier is, non-
rigorously speaking, that it must have no gaps, which
is not the same, as to say, that it must be connected.
More precisely, this means, that the frontier of a
frontier F is the same as F. For example, the frontier
in Fig. 1(c) has gaps represented by white disks. Let
us explain this. Fig. 1(c) shows a space S consisting
of points, lines and squares. The relation N is for this
case non-transitive: the SN(P) of a point P contains
some lines incident to P but no squares. The SN of a
line contains one or two incident squares, while the
SN of a square is the square itself. The subset T is
represented by gray elements. Its frontier Fr(7T', S)
consists of black lines and black points since these
elements do not belong to 7', while their SNs intersect
T. The white points do not belong to F = Fr(T, S)
because their SNs do not intersect 7. These are the
gaps. However, Fr(F, §) contains the white points
because their SNs intersect both F and its complement
(at the points itself). Thus in this case the frontier
Fr(F, S) is different from F = Fr(T, §).

We shall prove below that the frontier Fr(F, §) is
different from F = Fr(T', S) only if the neighborhood
relation is non-transitive, which fact is important
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to demonstrate that the smallest neighborhoods
satisfying our Axioms are open subsets of the space.

Axiom 4. The frontier of Fr(T, S) is the same as Fr(T,
S), i.e. Fr(Fr(T, S), S) = Fr(T, S).

Let us remain the reader the classical axioms of
the topology. The topology of a space S is defined
if a collection of subsets of S is declared to be the
collection of open subsets satisfying the following
axioms:

Axiom CI. The entire set S and the empty subset J are
open.

Axiom C2. The union of any number of open subsets
is open.

Axiom C3. The intersection of a finite number of open
subsets is open.

Also an additional so-called separation axiom is often
formulated in classical topology:

Axiom C4. The space has the separation property.

There are (at least) three versions of the separation
property and thus of Axiom C4 (Fig. 2):

Axiom Ty. For any two distinct points x and y there
is an open subset containing exactly one of the
points [2].

Axiom T). For any two distinct points x and y there is

an open subset containing x but not y and another
open subset, containing y but not x.

Figure 2. A symbolic illustration to the separation axioms.

Axiom T,. For any two distinct points x and y there
are two non-intersecting open subsets containing
exactly one of the points.

A space with the separation property 7, is called
Hausdorff space. The well-known Euclidean space is
a Hausdorff space.

Now we shall demonstrate that the axioms of the
classical topology follow as theorems from our set of
Axioms 1 to 4.

3. Relation between the Suggested and the
Classical Axioms

We shall show in the next Section 4 that the classical
Axiom T follows from the demands that the frontiers
must be thin and that the frontier of a subset 7" must
be the same as the frontier of its complement S — 7.
For this purpose we shall show now that the neighbor-
hood relation in a space satisfying our Axioms must be
antisymmetric.

Theorem TF (thin frontier). An LF space S satisfies
the Axiom 3 (Section 2) iff the neighborhood relation
N of the space S is antisymmetric.

To make the reading easier, we have presented all
proofs, except that of the Main Theorem below, in
Appendix 1.

There is a possibility to achieve that the frontier be
thin for any subset of a space with a symmetric neigh-
borhood relation: it is necessary to change the Defi-
nition FR of the frontier so that only elements of T
may belong to the frontier of 7' [20]. However, this
possibility leads to different frontiers of T and of its
complement S — 7', which may be considered as a topo-
logical paradox and contradicts the classical definition
of the frontier. Thus, the neighborhood relation in a
space satisfying our Axioms must be antisymmetric.

Now let us introduce the notion of open subsets of a
locally finite space.

Definition OP (open). A subset O C S is called open
in § if it contains no elements of its frontier Fr(O, S).
A subset C C S is called closed in S if it contains all
elements of Fr(C, S).

Lemma SI. (SN in subset) A subset T C S is open
in S according to Definition OP iff it contains together
with each element a € T also its smallest neighbor-
hood SN(a).



Now let us demonstrate that the first three classical
axioms C1 to C3 may be deduced as theorems from
our Axioms.

Theorem OS (open subsets). Subsets of an ALF
space S, which are open in S according to Definition
OP, satisfy the classical Axioms Cy to C3 and therefore
are open in the classical sense.

In the proof of Theorem OS the classical axioms C1
to C3 of the topology are deduced from our Axiom 1
and Definitions FF and OP. In the following Section
we shall demonstrate, that an ALF space is a particular
case of a classical topological T space.

4. Deducing the Properties of ALF Spaces
from the Axioms

In the previous section we have demonstrated that an
ALF space is a topological space in the classical sense
and that the neighborhood relation is antisymmetric
(Theorem TF, Section 3).

Consider the relation “a # b and a € SN(b)”. It is
usual to call it the bounding relation, to denote it by
B and to say “b bounds a” or “a is bounded by b”.
This notation reflects the fact that b € Fr({a}, S). The
relation B is irreflexive. According to Theorem TF it
must be asymmetric. Now we shall demonstrate that it
is transitive.

Lemma MM (minimum and maximum). [fS is an
ALF space and the bounding relation B is transitive,
then S contains elements, which are bounded by no
other elements, and it contains elements, which bound
no other elements.

The first ones will be called the minimum elements
and the latter the maximum ones.

Lemma NM (no maximum in Fr). Let T be a subset
of S. If the bounding relation B is transitive, then Fr(T,
S) contains no maximum elements of S and for any
element a of S the subset SN(a) contains at least one
maximum element of S.

Theorem TR (transitive). An LF space satisfies Ax-
iom 4 iff the bounding relation is transitive.

Corollary HO (half-order). The bounding relation
B, being irreflexive, asymmetric and transitive, is an
irreflexive half-order and we can write a < b instead
of aBb.
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Corollary NO (neighborhood is open). The small-
est neighborhood of any element a of an ALF space is
open both according to Definition OP and in the clas-
sical sense. It is the smallest open subset containing a.

Corollary TO. The smallest neighborhoods in an
ALF space satisfy the classical Axiom T.

The proofs are to be found in Appendix 1.

Conclusion. We have demonstrated in Section 3 that
the classical axioms C1 to C3 can be deduced as theo-
rems from our Axioms. Now we see that the classical
Axiom Ty also follows from our Axioms. This means
that an ALF space is a particular case of the classi-
cal Ty space. We have chosen our Axioms 1 to 4 in
the hope that they will be naturally comprehensible for
practically oriented researchers. Thus this considera-
tion may serve as an answer to the first question raised
in the Introduction: Yes, it is necessary to use the clas-
sical open subsets to arrive at practically acceptable
notions of connectedness and boundary.

Let us now consider an important particular case of
LF spaces known as abstract cell complexes.

Definition SON (smallest open neighborhood). The
smallest open subset of the ALF space S that contains
the elementa € S is called the smallest open neighbor-
hood of a in § and is denoted by SON(a, S). According
to Corollary NO SON(a, §) = SN(a).

Definition FC (face). A space element a is called a
face of the element b if b € SON(a, S). If a = b,
then a is a non-proper face of b. The face relation is
reflexive, antisymmetric and transitive. Thus, it is a
reflexive partial order in S and it is usual to denote it
bya <b.

According to Corollary NO the neighborhood rela-
tion N (Section 2) in an ALF space is the inverse face
relation: aNb means that a € SN(b) while b is a face
of a.

There is an important particular case of ALF spaces,
which is especially well appropriate for applications in
computer imagery. It is characterized by a half-order
relation between the elements of the space and by an ad-
ditional feature: the dimension function dim(a), which
assigns the smallest non-negative integer to each space
element so that if b € SON(a, S), then dim(a) < dim
(b). This kind of an LF space is called abstract cell
complex or AC complex [14]. Its elements are called
cells. If dim(a) = k, then a is called a k-dimensional
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Figure 3. A complex with bounding relations represented by ar-
rows. An arrow points from a to b if a bounds b.

cell or a k-cell. The dimension of a complex is the
greatest dimension of its cells.

We have already introduced at the beginning of this
Section the bounding relation a < b, whichmeans a <
banda # b.Itisirreflexive, asymmetric and transitive.

Dimensions of cells represent the half-order corre-
sponding to the bounding relation. Let us call the se-
quence a < b < --- < k of cells of a complex C, in
which each cell bounds the next one, a bounding path
from a to k in C. The number of cells in the sequence
minus one is called the length of the bounding path.

Definition DC (dimension of a cell). The dimension
dim(c) of a cell ¢ of a complex C is the length of
the longest bounding path from any element of C
to c.

This definition is in correspondence with the well-
known notion of the dimension or height of an element
of a partially ordered set [2a].

An example is shown in Fig. 3.

Figure 3 shows a complex and the bounding relations
of its cells. The cell p is a minimum element of the
space, its dimension is 0. One of the longest bounding
paths from ptovis(p,e, f,v).Itslengthis 3, therefore
dim(v) = 3.

The dimension of the space elements is an important
property. Using dimensions prevents one from some er-
rors, which may occur when using an LF space without
dimensions.

Thus, for example, it is possible to define a topology
on the set Z" by defining the points with an odd value
of x; + - - - + x, as open and those with an even value
of x; +--- 4+ x, as closed [7, p. 199].

It is a topological space in the classical sense. How-
ever, it is a one-dimensional space and thus not appro-
priate for the n-dimensional set Z". Really, a closed
point bounds 2n open points, which in turn bound no

S = N W kB~ 0

0123456789

Figure 4. The frontier (black disks) of a subset (gray squares and
disks) under the one-dimensional topology assigned to Z2.

other points. Thus, the length of all bounding paths is
equal to 1. It is easily seen that the frontier of a subset
of this space is a disconnected set of closed points be-
cause the frontier contains no open points, while no
two closed points are incident to each other. How-
ever, one expects from an n-dimensional space with
n > 1 that the frontier of its subset is connected. Fig-
ure 4 shows the case of n = 2. The squares represent
the open points, circles and disks represent the closed
ones. The neighborhood of a closed point contains ad-
jacent squares, while the neighborhood of a square
is the square itself. The neighborhoods of the closed
points represented by black disks intersect both the
foreground (gray) and the background (white). These
are the only elements of the frontier and their set is dis-
connected. This error was made even by some experts
because they have ignored the dimensions of space el-
ements. The usage of dimensions of space elements is
one of the advantages of the abstract cell complexes as
compared with LF spaces without dimensions.

We shall use in the following sections a particular
case of AC complexes known as Cartesian complexes
[13, 15, 16]. Consider a space S whose elements com-
pose a sequence:

S = (e, €1, €2, ..., €) “.1)

Let each e¢; with an odd index i to bound the elements
e;—1 and e;;1. Thus § becomes a one-dimensional
ALF space. If we assign the dimension O to each
closed and the dimension 1 to each open element,
then S becomes a one-dimensional AC complex. Each
closed cell is a face of two open cells. The indices in
(4.1) are called combinatorial coordinates of cells in
a one-dimensional space. (In former publications of
the author [15, 16, 18] they were called “topological
coordinates”).

An AC complex of greater dimension is defined
as the Cartesian product (also called the product set,



set direct product, or cross product) of such one-
dimensional complexes. A product complex is called
a Cartesian AC complex [13]. The set of cells of an
n-dimensional Cartesian AC complex S ” is the Carte-
sian product of n sets of cells of one-dimensional AC
complexes. These one-dimensional complexes are the
coordinate axes of the n-dimensional space. They will
be denoted by A;, i = 1, 2,...,n. A cell ¢ of the
n-dimensional Cartesian AC complex S " is an n-tuple
¢ =(ay ,az, ..., ay) of cells a; of the corresponding
axes: a; € A;. The cells a; are called components of
c.

Definition FRL (face relation). The face relation of
the n-dimensional Cartesian complex S " is defined as
follows: the n-tuple (a, a, ..., a,) is a face of another
n-tuple (b1, by, ...,b,) iffforalli =1,2,...n the cell
a; is a face of b; in A;.

Coordinates of a product cell ¢ are defined by the
vector whose coordinates are the coordinates of the
components of ¢ in their one-dimensional spaces.

Theorem KC (k-dimensional cell). The dimension
of a cell c = (a1, as,...,a,) of an n-dimensional
Cartesian complex S is equal to the number of its com-
ponents a;, i = 1, 2, ...n; which are open in their
axes.

It is easily seen, that the dimension of a product cell ¢ is
equal to the sum of dimensions of its components. Cells
of the greatest dimension n are called the principal
cells.

In the present paper we are interested to compare
Cartesian complexes with standard 2D and 3D grids
used in computer imagery. It is therefore appropriate
to use here coordinates, which are the same for the
principal cells of a Cartesian complex and for the pix-
els or voxels of a grid. These are the so called semi-
combinatorial coordinates, which are integers for open
components and half-integers for closed ones. If a cell
has combinatorial coordinates (x;, x», ..., X,), then
its semi-combinatorial coordinates are y; = x;/2,i =
1,2,...,n.

Cartesian complexes [13] are similar to spaces,
which were independently published as Khalimsky
spaces [6]. The difference consists only in the absence
of the dimensions of space elements in Khalimsky
spaces.
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5. Previous Work

Since images are finite sets, it is natural to apply to
them the axiomatic topology of locally finite spaces,
especially that of AC complexes. There is, however, a
difficulty, which has prevented until now the wide prop-
agation of this theory among the researchers working
in computer imagery. The difficulty arises due to the
necessity to have space elements of different dimen-
sions possessing different neighborhoods. Therefore
attempts have been made to develop some kind of ersatz
topology, which can be applied directly to sets of pix-
els or voxels. This is the concept of (a, b)-adjacencies
[10, 20] often called the graph-based approach to dig-
ital topology. The ersatz topology is in concordance
neither with the classical topology nor with that of LF
spaces. However, it is widely spread in computer im-
agery since it is easy to understand and easy to apply.

As we have mentioned in the Introduction, many re-
searcher in the field, including A. Rosenfeld, the author
of the (m, n)-adjacencies, agree, that an adjacency re-
lation is not consistent (or not “well-behaved”) if there
is no topological space whose connectedness relation
is analog to that of an image with that adjacency rela-
tion. Thus, to solve the problem posed by Yung Kong
[9] and mentioned at the beginning of the Introduction,
it is necessary to compare the connectedness relation
in a digital image and in a corresponding topological
space.

It is possible to try to define a topological space with
the property that the connectedness of subsets is the
same as in images provided with a particular (m, n)-
adjacency. If the trial is successful, then this particular
adjacency relation is “well-behaved”.

Both the graph-based and the axiomatic approach to
digital topology have been discussed in the literature.
In the textbook [7] both approaches are discussed “par-
allel”. This means that each problem is described two
times, from both points of view. However, there is no
such comparison of the connectedness as mentioned
above. Klette has compared in his lecture notes [8] the
connectedness of a (4, 8)-connected binary 2D image
with that of a 2D complex and the (6, 26)-connected
binary 3D image with that of a 3D complex. He has
stated that when assigning the 0-dimensional and 1-
dimensional cells to the foreground according to the
“maximum-value rule” [14], then the connectedness in
the image and in the complex are identical. However,
he has not considered the general case.

Eckhardt and Latecki consider in their recent pub-
lication [4] three approaches to digital topology: the
graph-theoretic approach, that of imbedding and the
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axiomatic approach. They consider as the axiomatic
approach the Alexandroff topology [1]. They have
demonstrated that the connectedness relation in a topo-
logical space, which is identical to that of a 2D im-
age with the 8-adjacency, corresponds to a non-planar
graph. But they have not considered pairs of adjacen-
cies in 3D.

Kong and Rosenfeld [11] discuss the graph-based
and the topological approach to digital topology. They
consider a Euclidean complex E (without calling it
by name) as a topological space, while the centers of
the principal cells are points of Z". Thus Z" is identi-
fied with the set of the principal cells rather than with
the whole set of cells of E, which is correct. The au-
thors introduce the notion of “face-convex topological
picture”. This is a complex with the following prop-
erties: given a subset B of the foreground (“black”)
principal cells of E, the set B* of all cells of E belong-
ing to the foreground must satisfy

Int(C1(B, S), S) € B* C CI(B, S);

where CI(B, S) is the closure and Int(B, §) the interior
of B in §. (The definitions of these well-known notions
are given below)

The authors have demonstrated that for any face-
convex n-dimensional complex EF, n = 2 or 3,
there exists a digital picture with the specific ad-
jacency relation depending on B*, while EF is its
“continuous analog”. The pair, in which one of the
adjacencies is the “minimal” one, corresponding to
2-n neighbors, and the other is the “maximal” one,
corresponding to 3" —1 neighbors is a special case cor-
responding to B* = CI(B, S). However, they have
not discussed the existence of analog complexes for
digital images provided with all possible pairs of
adjacencies.

In [7] the new idea of the switch-adjacency
(s-adjacency) is suggested for 2D pictures. According
to the s-adjacency exactly one of the two diagonally
adjacent pairs of pixels is adjacent. It is possible to
define one fixed pair as adjacent in all 2 x 2 blocks
(Fig. 2.7 middle in [7]), or the choice of the pair may
depend on the position of the 2 x 2 block of pixels.
For example, one of the pairs is defined to be adjacent
if the y-coordinate of the lower left-hand corner of the
block is odd (Fig. 2.7 left in [7]). This two kinds of
adjacency obviously correspond to a 6-adjacency ap-
plied to the rectangular grid as suggested in [12]. An-
other possibility is to “. .. let the s-adjacencies depend
on the pixel values”. This kind of s-adjacencies may
be applied to grayscale pictures. This corresponds to

the “membership rules” suggested in [14]. The authors
have suggested no s-adjacency for the 3D case neither
they have discussed the question of which adjacency
pairs in 3D are “well-behaved”.

6. Consistency of the (m , n)-Adjacencies from
the Point of View of the Axiomatic Theory

We shall consider in this Section the (2, n)-adjacencies
from the point of view of the axiomatic topology, find
its limitations and suggest in Section 7 ways for topo-
logical investigations and for developing new topolog-
ical algorithms, which are directly applicable to arrays
of pixels or voxels.

Let us see, which adjacency pairs are consistent from
the point of view of topology.

We shall need a universal notation for different adja-
cency relations in Z". The common notation by means
of the number of adjacent points is inconvenient be-
cause these numbers depend on the dimension n of the
space in a rather complicated way. We shall denote in
what follows an adjacency relation between two points
P, and P, of Z" by means of the squared Euclidean
distance d > (Py, Py) = Y _(x1; — X2;)* between P and
P;.

Letus call the set {xy, x7, ..., x, } of the coordinates
of an element e of Z" or of a Cartesian complex the
coordinate set of e.

Definition CS (close). Two coordinate sets are called
close to each other if the absolute values of all dif-
ferences of their corresponding coordinates are less or
equal to 1.

Definition AD. Two points P; and P, of Z" are
called a-adjacent iff they are close to each other and
d*(Py, P,) <a.

The value of a will be called the index of the cor-
responding adjacency relation. According to this nota-
tion the 4-adjacency in 2D becomes the 1-adjacency,
the 8-adjacency becomes the 2-adjacency. In 3D the
well-known 6-, 18- and 26-adjacencies become 1-, 2-
and 3-adjacencies correspondingly. This notation may
be easily used in Z" of any n.

Consider the quadruple (Z", a, b, TR), where a and b
are indices of adjacency relations, 7R is an a-connected
subset of Z" called “foreground”, while the subset
KR = Z" — TR is the b-connected “background”. We
shall call, similarly as in [11], the quadruple (Z", a, b,
TR) an n-dimensional graph-based digital image. On



the other hand, we call the pair (S”, T'), where S” is an
n-dimensional Cartesian complex partitioned into two
subsets T and S” — T, an n-dimensional topological
digital image. Let G" be the set of the principal cells
of §" and M be a one-to-one map between Z" and G”
mapping each point P of Z" to the principal cell of S”
having the same coordinates as P.

Definition CL.  (closure). Lett and T be subsets of the
space S such that € T C S. Then the set containing
with each cell a € t also all cells of T, which bound a,
is called the closure of tin T and is denoted by CI(z, T').
The set t—Fr(¢, T') is called the interior of t in T and is
denoted by Int(z, T).

Definition TA. The n-dimensional topological image
(8", T) is called the topological analog of the n-
dimensional graph-based digital image (Z", a, b, TR)
if the following conditions hold:

1. The closure CI(M(tr), T) of M(tr) of any a-
connected (a-disconnected) subset tr C TR is con-
nected (correspondingly, disconnected).

2. The closure CI(M(cr), S"—T) of M(cr) of any b-
connected (b-disconnected) subset crCKR is con-
nected (correspondingly, disconnected).

Main theorem. There exists a topological analog (S",
T) of the n-dimensional digital image DI = (Z", a, b,
TR) with an arbitrary subset TRC Z" iff a # b and
a = n or b = n. A face-convex analog of DI exits iff
a=1,b=nora=nb=1.

To prove the Theorem we need some definitions and
lemmas.

Definition IC (intermediate complex). If two prin-
cipal cells V| and V, are close to each other, then
the cell C with the coordinates (V; + V»)/2 is called
the intermediate cell of V| and V,. The closure IC =
CI({C}, S") is called the intermediate complex of V;
and V,. Note that C is the greatest dimensional cell
of IC.

Lemma SC (small cell). Iftwo principal cells V and
W are close to each other, then each cell of the inter-
mediate complex IC is incident to both V and W.

The proof is to be found in Appendix 1.

Definition CS (corresponding subsets). A subset T
of §” is called corresponding to the subset TR of Z" if
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there is a one-to-one correspondence between Z" and
S", which maps the points of 7R onto the principal cells
of T and vice versa.

Lemma NP (number of principal cells). A k-
dimensional cell in an n-dimensional Cartesian
complex is a face of 2" principal cells.

We present the following proof here because it con-
tains notions that we will need below.

Proof of the main theorem: Let P; and P, be two
points of TR, which are a-adjacent and V; and V, be
two principal cells of T having the same coordinates
as P, and P,. The a-adjacency of P; and P, means
according to Definition AD that d?(P;, P,) < a and
hence d*(Vy, V») < a. According to Lemma SC each
cell ¢ of the intermediate complex IC = CI({C}, S") of
Vi and V;, where C = (V| + V,)/2 is their intermedi-
ate cell, is incident to both V| and V. To make the set
CI({V1} U {V,}, T) connected, it is necessary and suf-
ficient to include any one cell of IC in T'. If, however,
d*(Vy, V») > a then to make the set Cl{Vi}u{wv,}, T)
disconnected it is necessary to include the whole inter-
mediate complex IC in the complement K = S" — T.
Similar conditions are guilty for points of KR and the
adjacency b if we interchange T and K. The demands
of including a cell of IC or the whole IC in T or in K
may cause contradictions.

Really, if the dimension dim(C) of the intermediate
cell C is less than n — 1 then, according to Lemma NP,
there are at least four principal cells incident to C and
at least two pairs of principal cells, say (V;, V,) and
(W1, Wy), for which C is its intermediate cell and IC
=CI({C}, §")isits intermediate complex. The distance
d* (W, Wy)isequaltod % (Vy, V,) since both of them
are equal to n— dim(C). If the M-preimages of V,
and V; belong to 7R while the M-preimages of W;
and W, belong to KR and d 2(W;, Wa)< b then it is
necessary and sufficient to include any cell of IC in
S§" — T. This does not contradict the demand that at
least one cell of IC be included in T only if /C contains
more than one cell. This is the case if dim(C) > 0.

Table 1. Consistency of adjacency pairs.

d><b=cek d>>b=ICCT

d?<a=ceT OK iff dim(C) >0 OK
d*>a=I1Cc K OK contradiction
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Table 2. Consistency depending on the dimension of the intermediate cell
b<n b=n
b#a b=a b#a b=a

a<n dim(C) = 0; case 1 bad bad OK —
0 <dim(C)< n — 1; case 2 variable variable OK —
dim(C)=n — 1; case 3 OK OK OK —
all dimensions of C bad bad OK -

a=n dim(C)= 0; case 1 OK — — bad
0 <dim(C) < n — 1; case 2 OK — — OK
dim(C)=n — 1; case 3 OK — — OK
all dimensions of C OK - - bad

Conclusions of these considerations are summed up in
Table 1.

“OK” means that there are no contradictions when
includingcor ICto T or K.

There are the following three cases of apply-
ing Table 1 to pairs of principal cells with different
distances:

[Case 1.] d*(Vy, V,) = n;dim(C) = n —d*(V,, Vo)=
0. Since a, b < n; the expression d? < a in Table 1
can be replaced by d> = a and d*> < b by d*> = b.
Thus in this case there is no contradiction if exactly
one of the indices a and b is equal to n; however,
a = b leads to a contradiction.

[Case2.] 2 <d*(Vy, Vo))< n—1;1 < dim(C)< n—2.
Table 1 can be used without changes. There is no
contradiction if 1 <dim(C) < n —2 and d*> < a
or d> < b. Note that if « = n or b = n, then the
condition is always satisfied. Otherwise there may
be a contradiction.

[Case 3.1 d* (Vy, V») = 1; dim(C) = n — 1. In this
case the intermediate cell C is incident to a single
pair of principal cells. Therefore, only one of the
adjacencies a and b will be used and no contradiction
can occur.

These cases can be summed up in the Table 2.

Thus, the pair (a, b) is consistent iff ¢ = n and
b <norb =nanda < n. To obtain a face-convex
topological analog it is necessary to include always the
whole intermediate complex in one of the subsets T or
K . Table 1 must then be replaced by the Table 3.

The above cases 1 and 3 can be applied to Table 3
without changes, but the case 2 must be changed:

[Case 2.] 2 < d*(Vi, V) < n—1;1 < dim(C) <
n—2. According to Table 3, there is no contradiction

Table 3. Face convex consistency

d?<b=ICCK d*>b=ICCT

OK
contradiction

d><a=ICCT contradiction
d>>a=ICCcK OK

ifa>d?*andb <d*orb > d*anda < d*.

The most rigorous restriction for a and b takes place
when dim(C) = n—2. Thend? = 2 and the consistency
condition becomes

a>2 and b <?2 b>2 and a<?2

6.1)

or

The condition of case 1 demands that exactly one of
the indices a and b is equal to n. When combining this
with (6.1) we arrive at the conclusion that a face-convex
topological analog exists iffa =nandb =1lorb=n
anda = 1.

Let us show, that in the cases free of contradictions
the desired connectedness of 7 and K is reached. A
connected subset tr C TR contains for any two points
P and P; of tr an a-path lying completely in #r. The
path is a sequence of pairwise a-adjacent points. Each
such pair corresponds to a pair of principal cells of S”
having the same coordinates. This pair is connected in
Cl(¢, T) with t = M(tr) due to the inclusion of cells
lying between them to T since Cl(¢, T') contains all
cells of T incident to the principal cells of #. Thus there
is an incidence path in CI(¢,T") between the principal
cells corresponding to Py and P, and therefore ¢ is
connected.

On the other hand, if a pair of points of TR is
a-disconnected, then the intermediate complex of
the corresponding principal cells V| and V, of T is
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Figure 5. Topological analogs of three graph-based digital images having the same set 7R and different adjacency pairs: (26,18) in (a), (18,26)

in (b), and (6,26) in (c).

included in K. In this case the set CI({V1}, {V2}, T)
is disconnected. In a similar way one can demonstrate
that Cl(k, S—T) with k& = M(kr) is connected
(disconnected) for any b-connected (b-disconnected)
subset kr C KR. O

Consider the examples of Fig. 5

All three graph-based digital images are defined on
the same subset of Z3 containing 3 x 4 x 3 points. They
have also the same subsets 7R represented by the cen-
ters of visible cubes. Points of KR are the centers of the
non-visible cubes. The 3-dimensional cells of 3 are
represented by cubes, the 2-cells by faces, the 1-cells
by edges and the O-cells by vertices of the cubes. The
cells of T are the visible cubes, the faces lying between
the visible cubes, the black edges and the black vertices.
The white edges and vertices belong to S*> — 7'. The dig-
ital image of Fig. 5(a) has the (26,18)-adjacency. Each
of the black vertices lies between two 26-adjacent but
not 18-adjacent visible cubes. Thus the set TR corre-
sponding to the set of visible cubes is 26-connected.
Each of the white edges lies between two 18-adjacent
non-visible cubes. Thus the set KR corresponding to
the set of non-visible cubes is also connected. Other
as in the case of the (8,8)-adjacency in 2D, this is no
topological contradiction due to the fact that there are
three cells in the set IC' = CI({p}, S*)NCl({g}, S?),
where p and g are two 18-adjacent cubes. Thus some
of the cells of IC! can by assigned to T and some other
to S° — T. This is impossible in the case of the (8,8)-
adjacency because the set IC° = CI({ p}, S*) N Cl({g},
52), where p and ¢ are two 8-adjacent pixels, consist
of a single cell.

The question may arise, whether a digital version
of the Jordan theorem is guilty in such a space. The
answer is “yes” for a topological space since a Jordan
surface in a 3D ALF space is a 2D complex being a 2-

dimensional combinatorial manifold [21]. It contains
no 3-cells. The answer is “not” for a graph-based digital
image since it is impossible to represent a 2D manifold
in a 3D space as a graph-based digital image.

Figure 5(b) shows the topological analog for the (18,
26)-adjacency. Also in this case both 7R and KR are
connected.

Figure 5(c) shows the face-convex topological ana-
log for the (26, 6)-adjacency. In this case TR is con-
nected, but KR is disconnected.

According to the Main Theorem the adjacency pair
(6,18) is not consistent. Some authors (e.g. [9]) as-
sert that it is “well-behaved”. Let us demonstrate a
counterexample. Consider a 3D image, in which the
background is 18-connected and the 6-connected fore-
ground consist of two cubes of m x m x m voxels,
m > 3, which cubes have 2 x 2 x 2 = 8 common
voxels at one corner (Fig. 6). Remove from each cube
a smaller interior cube of (m — 2) x (m —2) x (m —2)
voxels. The remaining set S is a 6-connected simple
“surface” according to the following often used defi-
nition (we write “surface” in quotation marks since a
topological surface is a frontier of a solid 3D subset
[17] and contains no 3-cells).

Let N,(p) be the b-adjacency of the point p.

Definition SS (simple surface). The subset B of a
graph-based digital picture P = (Z", a, b, B) is a sim-
ple (a, b)-surface if it is a-connected and for each point
p € B the set Ny(p) —{p} is a simple digital b-curve,
i.e. aclosed sequence C of b-connected points, in which
any point is adjacent to exactly two other points of C.

It is easily seen, that the set S satisfies this defini-
tion. A simple surface must satisfy the Jordan The-
orem and subdivide its complement into exactly two
components.
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Figure 6. 'Two hollow cubes (a), a cross section through the only common vertex of the interior cubes (b) and the interior cubes (c).

However, the “surface” S of Fig. 6 subdivides its
18-connected complement into three components, as it
can be seen in Fig. 6(b), which is a topological contra-
diction.

Yung Kong [9] considers also the pairs (12,12),
(12,18) and (18,12) as “good pairs ...on the points
of a 3-d face-centered cubic grid ...and (14,14) ...on
the points of a 3-d body centered cubic grid”. We have
seen above that pairs (a, b) with a = b are not good on
Z3. Why can pairs with a = b be good on other grids?

There exist n-dimensional LF spaces with the prop-
erty that any two principal cells that have a common
incident cell of any dimension also have a common
incident (n—1)-cell. We suggest to call them com-
pletely connected spaces or CC spaces. The notion of
a strongly connected complex is well-known: an n-
dimensional complex S is called strongly connected
if for any two principal cells G|, G, of S there ex-
its a sequence of alternating mutually incident n- and
(n—1)-cells of S, which sequence starts with G; and
ends with G,. In an CC complex any connected subset
is strongly connected.

The simplest example is the hexagonal grid: any two
hexagons that have a common vertex also have a com-
mon side. Also the 2D grid consisting of alternation
squares and octagons is completely connected.

Completely connected spaces that correspond to tes-
sellations of Euclidean 3-space by translates of a single
polytope are of particular interest.

Definition HCC. An n-dimensional LF space, in
which the principal cells are isomorphic to translates
of a single polytope and any two principal cells, which
have a common incident cell of any dimension also
have a common incident (n—1)-cell, is called a homo-
geneous completely connected space or a HCC space.

As we have seen in the proof of the Main Theorem,

if two principal cells have a common (n—1)-cell, then
no contradiction can occur. In a HCC space each close
pair has a common (n—1)-cell. Therefore in a HCC
space the adjacency pair (m, m), where m is the number
of the principal cells incident to each principal cell, is
consistent.

The reader can easily see that the hexagonal grid is
the only two-dimensional HCC space. It is known [5]
that the truncated octahedron (Fig. 7) is the only “primi-
tive” parallelohedron, i.e., at each of its vertices exactly
4 (generally: n4-1) tiles of a suitable face-to-face-tiling
come together. It has 14 faces. Parallelohedrons of this
tiling are isomorphic to the principal cells of a 3D HCC
space.

Since the truncated octahedron is the only primitive
parallelohedron, other tesselations of the 3D space by
translation do not compose HCC spaces. Therefore,
in the tesselation by rhombic dodecahedrons, which
corresponds to the above mentioned (12,12) adjacency,
two principal cells may have a O-cell C° as the single
common face. Thus a topological contradiction takes
place when the first adjacency demands that C° belongs
to the foreground while the second adjacency demands
that it belongs to the background.

Figure 7. 'The truncated octahedron.
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Figure 8. Holes in a 4-connected subset.

7. Recommendations for Applications

We have demonstrated that the majority of the adja-
cency pairs are topologically contradictory. Even the
few consistent pairs, (4,8) and (8,4) in 2D and (6,26)
and (26,6) in 3D, have important drawbacks:

(a) They are only applicable in cases when there is
only one subset of the space under consideration
(and its complement). Thus they are not applicable,
e.g., for colored images.

(b) Eveninthe case of a black-and-white image the set
created by an adjacency pair has a strange topo-
logical structure: thus, e.g. a 4-connected subset
is full of holes due to the missing O-cells. Con-
sider e.g. an image with the (4,8)-adjacency and
the 4-connected dark subset of Fig. 8. It is topo-
logically correct that the 0-cell between the pixels
d and f belongs to the white subset making the
pixels d and f disconnected and the pixels c and g
connected.

However, it is not necessary, that the 0-cell be-
tween the pixels d and b belongs to the white sub-
set. This makes the greater component of the dark
subset not simply connected. Each 0-cell incident
to 4 pixels of T belongs to the frontier of the dark
subset, and the frontier is disconnected, which is
never the case for a simply connected subset of a
topological space. This drawback does not affect
the desired connectedness; it can, however, lead
to topological contradictions when solving more
complicated topological problems. For example, a
6-connected ““surface” in 3D has a lot of tunnels
due to missing 1-cells.

(c) The frontiers of subsets under an adjacency rela-
tion are either not thin (compare Section 2) or the
frontier of a subset is different from the frontier
of its complement, which is a nonsense both from
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the point of view of topology and of the common
sense.

(d) The connectedness structure produced by an adja-
cency pair is no topological space at all since this
structure is a property of a concrete subset of the
space rather than that of the space. The connected-
ness changes when the subset changes.

What are the conclusions and the recommendations
for algorithm design? We recommend not to use ad-
jacency relations and to consider all topological and
geometrical problems from the point of view of locally
finite topological spaces (ALF spaces) or, even better,
of complexes. The latter special case of an ALF space
has some advantages due to the presence of the dimen-
sions of cells. The dimensions of cells make the work
with the topological space easier and more illustrative.

The usual objections against the use of complexes
are the following:

(a) Why should we use cells of lower dimension, which
we don’t see on a display?

(b) When using complexes, one needs much more
memory space: 4 times or 8 times more in the 2D
or in the 3D case correspondingly.

The objection because of visibility is not pertinent since
the visibility has nothing to do with topology. For ex-
ample, we all use in our work with 3D images the vox-
els. However, the voxels are not visible on the displays:
what we see are the faces of voxels, i.e. the 2-cells, while
voxels are 3-cells. Thus, e.g. the software “OpenGL”,
which is widely spread for representing 3D scenes,
works only with faces of polyhedrons like triangles,
squares, polygons and does not use three-dimensional
bodies at all.

Figure 9. A white and a black V-shaped regions in one image, both
connected due to applying the EquNaLi rule.
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Figure 10. A hexagonal grid (a), a transformed rectangular grid (b), a rectangular grid with 6-adjacency (c) and the “virtual” cells, transforming

each pixel to a hexagon.

The second objection is pertinent only if one would
try to allocate memory space for cells of all dimensions,
which is almost never necessary. Cell complexes are a
means for thinking about geometrical and topological
problems rather than for data saving. It is possible to
work with complexes, while saving in the memory only
certain values assigned to the principal cells, like colors
for the pixels, or densities for the voxels. Cells of lower
dimensions are present as some kind of virtual objects
only. Algorithms of this kind are described in [18, 19].
In cases when the membership of cells of lower dimen-
sions is important it can be defined by a “flat rate” face
membership, i.e., a rule specifying the set membership
of each cell as a function of the membership of the
incident principal cells.

Consider the example of Fig. 9. Suppose, it is neces-
sary to define the connectedness in such a way that both
the white and the black “V” are connected. This is obvi-
ously impossible under any adjacency relation, neither
under the s-adjacency [7]. The aim can be achieved by
means of the following rule [14] for assigning mem-
bership labels to 1- and O-cells.

EquNaLi Rule:

A 1-cell gets the greatest label of the two incident
pixels.
The label of a 0-cell ¢ is defined as follows:

If SON(c") contains exactly one diagonal pair of
pixels with equivalent (“Equ”) labels, then ¢ gets
this label. If there are two such pairs but only one of
them belongs to a narrow (“Na”) stripe, then ¢ gets
the label of the narrow stripe. Otherwise c” gets the
maximum, i.e. the lighter (“Li”) label of the pixels
of SON(cY).

The latter case corresponds to the cases when
SON(c?) contains no diagonal pair with equivalent la-
bels or it contains two such pairs and both of them
belong to a narrow stripe.

To decide, whether a diagonal pair in SON(c?) be-
longs to a narrow stripe it is necessary to scan an array
of 4 x 4 pixels with ¢” in the middle and to count the
labels corresponding to both diagonals. The smaller
count indicates the narrow stripe. Examples of other
efficient membership rules may be found in [14].

Another important problem is that of using com-
pletely connected spaces. It is not correct to think that
we need some special scanners or other special hard-
ware to work with a hexagonal 2D space or with a 3D
space tessellated by truncated octahedrons. It is possi-
ble to use as ever the standard orthogonal grids. The
only thing, which must be changed is the definition of
the incidence and hence that of the connectedness.

Consider the example of the hexagonal 2D space.

Figure 10(a) shows a hexagonal grid. In Fig. 10(b)
we see the transformed rectangular grid, in which the
upper left corner of each rectangular pixel is replaced
by a slanted edge. The original rectangular grid is
shown in Fig. 10(c). The arrows show the only six
pixels, which should be considered as adjacent to the
shaded pixel. If it is necessary to take cells of lower di-
mensions in consideration, then two O-cells and three
1-cells must be assigned to each pixel, as shown in
Fig. 10(d). Thus two virtual 0-cells and one virtual 1-
cell correspond to each vertex of the grid. The remain-
ing two 1-cells correspond to the edges of the grid. All
five faces assigned to a pixel have the same coordi-
nates as the pixel. They can be distinguished by their
types only. If it is necessary to assign a label to each
0-cell and to each 1-cell then 5 bits of the memory word
assigned to the pixel can be used for these cells. The
rest of the memory word can be used for the label or



for the color of the pixel. This data structure and some
algorithms working in a virtual hexagonal grid are de-
scribed in [12]. It should be stressed once more, that
the 6-adjacency realized by this data structure may be
used for multicolored images and causes no topological
paradoxes.

A similar data structure can be easily developed for
the 3D standard grid to realize the 14-adjacency corre-
sponding to the only 3D HCC space.

8. Conclusion

We have suggested a new set of Axioms of digital topol-
ogy and have demonstrated, that they define a space,
which is a particular case of a classical topological
space. This fact serves as an explanation, why the key
object of the classical topology, the system of open sub-
sets, must have the properties formulated as the clas-
sical axioms: these properties are necessary (but not
sufficient) to define the connectedness through neigh-
borhoods and the frontier of a subset T as a thin subset,
which is the same for a subset 7" and for its complement.
Thus we can now answer the second question, raised in
the Introduction: yes, it is possible to find such axioms,
however, they lead to a concept of a space, which is a
special case of a classical topological space.

The paper demonstrates how the (a, b)-adjacency
relations commonly used in computer imagery can be
brought into accordance with the connectedness of a
topological space. It was demonstrated that in spaces
of any dimension » only those pairs (a, b) of adjacen-
cies are consistent, in which exactly one of the adja-
cencies is the “maximal” one corresponding to 3" —1
neighbors. Even the consistent pairs have important
limitations: they are not applicable for multicolored
images and they cannot correctly represent topologi-
cal properties of subsets. We suggest to use instead the
concept of ALF spaces, while considering space ele-
ments of lower dimensions as “virtual” objects, which
need not be saved in the memory. This attitude makes it
possible to apply consistent topological definitions and
algorithms to images represented in standard grids. The
notion of homogeneous completely connected spaces
is introduced, and it has been demonstrated, that there
is only one such space of dimension 3; it is isomorphic
to the tessellation by truncated octahedrons, each of
which has 14 faces.

The paper shows, how locally finite spaces, espe-
cially cell complexes and completely connected spaces,
can be applied to computer imagery, while using stan-
dard orthogonal grids.
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Appendix 1: The Proofs

Proof of Theorem TF: According to Definition TF
the frontier Fr(7', S) is not thin if it contains an opponent
pair (a, b). According to Definition OT (Section 2), the
relations a # b, aNb and bNa must be true for this
pair. If N is antisymmetric, then the relations cannot
be true simultaneously. Therefore no opponent pair can
exist.

On the other hand, if N is not antisymmetric, then
there exist a,b € S such that a # b, aNb and bNa.
Then a belongs to the frontier Fr({a}, ) since SN(a)
contains an element of {a} and an element b which
is not in {a}. In the same way we can see that b also
belongs to Fr({a}, S). Therefore, a and b are opponents
and the frontier Fr({a}, S) is not thin. m

Proof of Lemma SI: Suppose T is open, a € T
and there exists b € SN(a), which belongs to the com-
plement of T'. Then according to Definition FR a be-
longs to Fr(T, S), which contradicts the Definition
OP. Thus, if a subset T is open, then it contains the
SN of all its elements. Now suppose that a subset T
contains the SNs of all its elements and is not open.
This means that it contains an element, say b € T,
which belongs to Fr(T, ). According to Definition FR
SN(b) must intersect the complement S — 7. Thus T
does not contain SN(b). The contradiction proofs the
Lemma. |

Proof of Theorem OS: The subset ¢ contains no
elements at all and thus the conditions of Lemma SI are
fulfilled in a trivial way. Thus according to Definition
OP the subset @ is open in S. The frontier Fr(S, S) of the
entire space is obviously empty since the complement
of S is empty. Thus S contains no elements of Fr(S, S)
and therefore S is open in itself.

Let the open subsets be O;,i = 1,2, ... Consider
an element a of the union U = UO0;,i =1, 2, ...;
that belongs to Oy, where k > 1. Since Oy is open,
it contains according to Lemma SI all elements of S
that are in SN(a). So does the set U. Similar argu-
ments are valid for each value of k. Thus U contains
all elements of S that are in SN(a) where a is any
element of U. According to Lemma SI U is open
in S. Now we shall deduce a stronger version of the
third axiom C3, which is well-known to be valid for
Alexandroff spaces [1]. Consider an element a of the
intersection I = NO;, i = 1,2,.... It belongs to
each of O;. Since each O; is open, it contains all ele-
ments of S that are in SN(a). So does the set I since
it contains all elements of S, which are contained in
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each O;. According to Lemma SI the set / is open
in S. The third classical axiom C3 follows immedi-
ately. O

Proof of Lemma MM: As we know, the bounding
relation B is irreflexive and asymmetric. If we sup-
pose, that B is transitive, then it is a half-order. Thus
we can write in this case a < b instead of aBb. Re-
member that aBb means a # b and b € SN(a). Con-
sider three elements a, b and ¢ such that aBb and
bBc. Since B is transitive, the relation aBc follows,
which means that ¢ € SN(a) and SN(b) C SN(a) since
¢ may be any element of SN(b). However, a ¢ SN(b);
thus SN(a) contains at least one element more than
SN(b).

Consider a sequence of elements, in which each el-
ement bounds the next one:

.<a<b<c<d<e...

Since the SN of each next element of the sequence
contains less elements than the previous one, the se-
quence must be finite. Otherwise the SN of the left most
element of the sequence would contain an unbounded
number of elements, which is impossible since the
space S is locally finite. Thus there exists the left most
element, which is bounded by no other elements of S.
This is a minimum element of S.

The sequence also cannot be infinitely contin-
ued to the right hand side. Really, since the num-
ber of elements of SN(a) is finite and the SN of
each next element contains less elements than SN(a),
there must be in the sequence the right most ele-
ment. Its SN contains only one element. This ele-
ment bounds no other elements. This is a maximum
element of S. O

Proof of Lemma NM: If a € Fr(T, §), then SN(a)
must intersect both 7 and S—7'. Thus SN(a) must con-
tain at least two elements, one belonging to 7' and an-
other belonging to S — 7. Let b # a and b € SN(a).
This means a < b. Therefore a is no maximum ele-
ment.

Let us prove now the second assertion. Let b €
SN(a), which means a < b, and suppose that b is not a
maximum element of S. Then there must be in S an ele-
ment ¢ such that b < ¢, which means ¢ € SN(b). Since
S is an LF space, the sequence a < b < ¢ <--- must
finish at a maximum element. Since B is transitive, all
elements of the sequence are in SN(a). Therefore the
maximum element belongs to SN(a). 0

Proof of Theorem TR: Let T be a subset of S and
F = Fr(T,S) be the frontier of 7. We must prove, that

1. if the neighborhood relation is transitive, then
Fr(F,S) = F is fulfilled for all subsets 7 C S and

2. if the condition Fr(F,S) = F is fulfilled for all sub-
sets T C S, then the neighborhood relation is tran-
sitive.

Let us first prove the assertion 1. Let a € F. It fol-
lows from a € SN(a) that SN(a) N F # . According
to Lemma MM, the set SN(a) contains a maximum
element of S which, according to Lemma NM, never
belongs to a frontier. Thus SN(a) N (S — F) # @ and
the conditions for a € Fr(F, S) are fulfilled and any
element of F belongs to Fr(F, S).

Now let b € Fr(F, S) which means SN(b)N F # ¢
and SN(b) N (S — F)# 0. The latter condition is always
fulfilled since SN(b) contains a maximum element. The
first condition means that there is in SN(b) an element
¢ € F. Transitivity of N means that any element d €
SN(c) belongs to SN(b). Thus SN (¢) € SN(b). Since
SN(c) intersects both T and S — T, so does SN(b).
Therefore, each element of Fr(F, S) belongs to F and
the assertion 1 is true.

To prove assertion 2 let N be non-transitive. Then
there exist distinct elements a, b, ¢ € S such that b €
SN(a), ¢ € SN(b), however, ¢ ¢ SN(a). Consider the
singleton {c}. It follows from ¢ ¢ SN(a) that a ¢
Fr({c}, S) since SN(a) N {c}= @. On the other hand,
a € Fr(Fr({c}, S), S). Really, b bounds ¢ and thus b €
Fr({c}, S). It follows from b € SN(a) that SN(a) N
Fr({c}, S) # @. Also SN(a) N (S— Fr({c}, S)) is not
empty since a ¢ Fr({c}, S). Thus, both assertion 1 and
2 are proved. O

Proof of Corollary NO: Let a be an element of S
and SN(a) its smallest neighborhood. Suppose SN(a)
is not open in S according to Definition OP (Section
3). Then SN(a) must contain at least one element b €
Fr(SN(a), S). This means that SN(b) contains at least
one element ¢ ¢ SN(a). Since a < b, b < ¢ and the
bounding relation is transitive, the relation a < c is
true, which means that ¢ € SN(a). The contradiction
proves that SN(a) is open according to Definition OP.
However, according to Theorem OS (Section 3), sub-
sets open according to Definition OP are also open in
the classical sense. To prove that SN(a) is the small-
est open subset of S containing a let us remove any
element b # a from SN(a). The reduced set does not



contain the smallest neighborhood of a. Thus, accord-
ing to Lemma SI (Section 3) it is not open. This proves
the Corollary. O

Proof of Corollary T0: Consider any two space el-
ements a and b. If they are not incident to each other,
then a ¢ SN(b) and b ¢ SN(a). In this case each of
the sets SN(a) and SN(b), being open according to
Corollary NO, satisfies the condition of Axiom Tj. If,
however, they are incident, then either b € SN(a) or
a € SN(b). Since the neighborhood relation is antisym-
metric, the condition b € SN(a) implies a ¢ SN(b). In
this case the open subset SN(b) satisfies the condition
of Axiom Tj. In the case when a € SN(b) this is the
set SN(a). |

Proof of Theorem KC: Letc = (a;j,a;,...,a,)bea
cell of S having exactly k open components. Then we
can find a sequence of cells beginning with c, such that
each next cell in the sequence has exactly one compo-
nent, which bounds one of the open components of the
previous cell. Thus, when changing from one cell of the
sequence to the next one, exactly one open component
will be replaced by a closed component. The last cell in
the sequence is a 0-cell having all components closed.
The sequence is a bounding path and its length is k.
Therefore according to Definition DC, the dimension
of ¢ is equal to k. O

Proof of Lemma SC: According to Definitions FC
and FRL (Section 4) a cell ¢; of a Cartesian complex is
a face of the cell ¢; if each component of ¢ is a face of
the corresponding component of ¢;. In a Cartesian com-
plex with semi-combinatorial coordinates (Section 4)
a component with a half-integer coordinate x is a face
of two components with integer coordinates x+1/2. A
component with an integer coordinate is a (non-proper)
face of itself only. Therefore, a cell c is a face of a prin-
cipal cell V iff |c; — V;| <1/2foralli €(1,n) (c, V
and W are considered here as n-dimensional vectors).
A cell ¢ is a face of two close principal cells V and W
if for all i € (1, n) either V; = W; and |¢; — V;| <1/2
or V; # W; and ¢; =(V;+W;)/2. Thus there are 3"
common faces of two close principal cells V and W,
where k = d*(V, W) is the number of different co-
ordinates of V and W. A face ¢ of V is incident to
V. According to Theorem KC (Section 4) the dimen-
sion of ¢ is equal to the number of its integer coordi-
nates. The cell with the greatest dimension among the
common faces of V and W is obviously the interme-
diate cell C =(V + W )/2 since C; are integers for
all i, for which V; = W; and C; can not be integer if
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Vi # W;. It is easily seen that all common faces of
V and W are faces of C. Therefore, they compose the
closure of C. O

Proof of Lemma NP: According to Theorem KC
(Section 4) a k-cell ¢* has k integer coordinates. When
adding to each of the remaining n — k coordinates +1/2
one gets a coordinate set containing n integers, i.e. a
coordinate set of a principal cell incident to c*. There
are 2*~0 possibilities of adding. O

Appendix 2: List of Abbreviations

2D; 3D; nD : two-dimensional; three-dimensional;
n-dimensional;

AC complex :
Section 4

ALF space : locally finite space satisfying our Ax-
ioms; introduced in Section 1

CC space : completely connected space; introduced
at the end of Section 6

CI(B, S) : closure of the subset B of the space S;
Definition CL in Section 6

d*(Py, Py): squared Euclidean distance between the
points Py and P»; introduced in Section 6

dim(a) : dimension function. Introduced in Section
4; Definition DC in Section 4

Fr(T, S): frontier of the subset T C S of the space
S; Definition FR in Section 2

G" : the set of the principal cells; principal cells are
the cells of the greatest dimension

HCC space : homogeneous completely connected
space; Definition HCC in Section 6

iff:  if and only if (a common notation in mathemat-
ical literature)

Int(B, §) : interior of the subset B of the space S;
Definition CL in Section 6

LF space : locally finite space; Definition LEFS in
Section 2

N : neighborhood relation; Definition NR in
Section 2

SN(e) : smallest neighborhood of the space element
e; introduced in Section 2

SON(a, S) : smallest open neighborhood of space
element a in the space S; Definition SON in Section
4

Z" . Cartesian product of n sets of all integers (a com-
mon notation in mathematical literature)

S§" : n-dimensional Cartesian complex or n-
dimensional space; introduced in Section 6

abstract cell complex; introduced in
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